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4
a closer look at the “dynamics”  
in Population dynamics

central to the analysis of population dynamics are concepts that come 
naturally to anyone trained in the physical sciences. In elementary phys-
ics classes, for example, a physical system is most frequently looked at 

from the point of view of stability and equilibrium. When engineers design sys-
tems, in fields from from aerospace to industrial management, one of the first 
questions asked is, Under what conditions will the system be at equi librium, 
and will it be stable or not? Ecologists also began by asking such questions 
of ecosystems. As a consequence, concepts such as balance (equilibrium) and 
stability have become central to both mathematical and conceptual analy-
ses of all ecosystems, especially in population and community ecology. Often 
such concepts have even become normative, central goals toward which we 
must strive in the design of sustainable resource management systems. Some 
ecosystems are reportedly unstable and have lost the inherent equilibria of 
natural ecosystems (Altieri 1987; Soule et al. 1990), and the job of good hus-
bandry should be to promote the use of management tools that will restore 
balance and stability, and therefore sustainability, to the system (Altieri 1987; 
Levins and Vandermeer 1989). Such is a widely held position.

In population and community ecology, such ideas have been debated and 
clarified over the past 20 years and their meanings operationalized to a con-
siderable extent. Furthermore, this operationalization forced a rethinking of 
some central concepts. To take a concrete example, one of the ideas that has 
seen a great deal of rethinking is that the complexity of a system is related to 
its stability. Metaphorically, as a system becomes larger, it develops more inter-
connections and, much as in the case of a spider web, those inter connections 
make it resilient to outside perturbations and thus stable—the more inter-
connections (read, the larger and more complex the system), the more stable 
it should be. However, the notion that a large, highly connected system would 
be more stable than a small system with low connectivity was challenged by 
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May (1974), who proved that, all else being equal, the larger and more com-
plex the system, the more likely it is to be unstable, precisely the opposite 
of what most ecologists intuitively felt. Rather than being like a spider web 
that receives its stability from all of the interconnections within it, food webs 
appeared to be like houses of cards, deriving their structure from the myriad 
connections among parts but becoming more fragile the larger they are.

The original intuition of ecologists was that large ecosystems, with their 
great biodiversity and complex interconnections, are more stable and more 
in “balance” (at equilibrium) than are simplified systems that have purpose-
fully been designed to eliminate much of that complexity. It seems an obvious 
idea, so how can it be that careful analytical thought suggests otherwise? One 
of the problems, perhaps the principal problem, is that these early conceptu-
alizations were based on classical notions of dynamics (stability, equilibrium, 
and balance) from the physical sciences. With those notions coupled with the 
semiromantic notion of the balance of nature, a mainstay of nature lovers 
and environmental activists alike, a perceived concatenation of the popular 
with the scientific created what seemed to be an unassailable principle. But a 
false analogy had been built up between the naturalists’ notion of balance and 
stability and the classical engineer’s notion of those same things. With more 
modern interpretations of the underlying dynamic structure of these and 
other concepts, largely derived from the new science of nonlinear dynamic 
systems, a new classification of dynamic behaviors may better correspond to 
the old naturalists’ or traditional farmers’ original intuition (Vandermeer et 
al. 2010). Appreciation of this idea will be enhanced by the material offered 
in this chapter.

EXErcisEs

4.1 The integrated form of the logistic equation is

Nt = KN0

(K − N0)e–rt + N0
.

 Use this equation to generate a time series of N versus t. Use parameters r = 1.5, K = 
100 and construct two time series, one with N0 = 10 and one with N0 = 190. (Use a 
time frame from 1 to 5 with intervals of 0.1.)

4.2 Repeat exercise 4.1 with r = −0.1. (Use a time frame from 0 to 100 with intervals of at 
least 1.0.)

4.3 Recall the population model of the Ricker equation from chapter 1,

Nt+1 = rNte(1–bNt).

 Let r = 2.5 and b = 2.5 and project the population 45 time units, beginning with a start-
ing population of 0.01. What is the pattern of the time series? Let r = 4 and b = 0.7 
and project the time series 45 times, beginning with a starting population of 3.5. Now 
what is the pattern of the time series?
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4.4 A simple model of predator (P) and prey (V, for victim) interacting in discrete time is, 
for the prey,

Vt+1 = bVt 1 K − Vt

K 2e–aPt

 and for the predator,

Pt+1 = cVt(1 − e–aPt).

 This model will be developed more fully in chapter 6. For now just examine the time 
series it generates. Use the parameters a = 0.1, b = 1.5, K = 40, and c = 1.5. Make a  
graph of the two species over time (from 0 to 200), and plot the two species on  
a graph of predator versus prey, showing the direction of change with arrows.

4.5 An even simpler model (again, to be developed in chapter 6) is

Vt+1 = bVt – mVtPt, 
 Pt+1 = b′VtPt – m′Pt.

 Repeat exercise 4.4 with this model and the parameters b = 1.1, m = 0.8, b′ = 0.5, and 
m′ = 0.002.

intuitive ideas of Equilibrium and stability

The intuitive notions of balance and stability have their parallels in classical 
analytical thought, balance as equilibrium and stability as one of two forms, 
either unstable or stable. Consider the graph in figure 4.1. The variable x could 
be any interesting variable, but for our purposes it is best to think of it as pop-
ulation density. Plotting density over time, beginning at various starting points, 
we see that no matter where the trajectory begins, it always ends up at the value 
x*. Furthermore, once it attains the value of x* it never deviates. The value x* 
is thus an equilibrium point (the system is in “balance” once it reaches that 
point). However, that the system is in balance is only one feature of x* that is 
important. The behavior of the variable x when it is not exactly at that equilib-
rium point is also of great importance. Although it is true that when the system 
is at equilibrium (the variable x exactly equals x*) it will remain there in perpe-
tuity, it is also true that the slightest deviation from that value (say, to the point 
labeled “deviation from equilibrium” in figure 4.1) will result in a return to that 
same equilibrium. Because any such deviation will result in a return to the same 
equilibrium point, the point is a “stable” equilibrium point.

In contrast, consider the situation presented in figure 4.2. Again there is 
an equilibrium point (x*), and again, if the system is initiated at exactly that 
point, it will remain there in perpetuity. But the slightest deviation from that 
point means the system will deviate forever. Thus the point is in balance and it 
is an equilibrium point because it will stay where it is forever if undisturbed. 
However, in this case the slightest deviation results in continued deviation. 
This is referred to as an unstable equilibrium point.
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In the past, equilibrium points have been called fixed points, singularities, 
and probably other things as well. The adjective stable or unstable is then 
attached to indicate the dynamic behavior of points near that singularity (or 
fixed point or equilibrium point). In more recent literature, the notion of the 
equilibrium itself and the behavior of points near to it has been termed either 
an attractor (for a stable equilibrium point) or a repeller (for an unstable 
equilibrium point). The terms attractor and repeller are more suitable for dis-
cussion given the recent advances in our understanding of models that have 
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FigurE 4.1. Illustration of the dynamical behavior associated with a point attractor.

FigurE 4.2. Illustration of the dynamical behavior of a point repeller.
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the sort of complexity demanded by ecological systems. In the rest of this text, 
when the subject arises the terms attractor and repeller will be used rather 
than stable equilibrium and unstable equilibrium.

To rapidly picture the dynamics of a system it is often convenient to sim-
ply represent the attractor or the repeller as a point on the line that rep-
resents the possible range of the variable in question (the ordinate in figures 
4.1 and 4.2), with small arrows indicating the direction in which the trajec-
tories near to the equilibrium point will go. The line is called the state space 
(i.e., the space, in the mathematical sense, that represents all possible val-
ues or “states” of these variables, called state variables), and the collection 
of arrows is called the vector field. When the arrows point toward the equi-
librium point (as in figure 4.1) it is an attractor, and when the arrows point 
away from the equilibrium point (as in figure 4.2) it is a repeller. Thus an 
examination of the vector field reveals whether a point is an attractor or a 
repeller or something else.

It is also popular to indicate the dynamics of a system by means of small 
physical models, as in figure 4.3. The marble on top of the hill (figure 4.3A) 
illustrates a repeller (the line below it with the point and the arrows is equiv-
alent to the ordinate of figure 4.2 turned on its side), and the marble at the 
bottom of the valley (figure 4.3B) illustrates an attractor. Because the attrac-
tor and the repeller are single points, they are called a point attractor and a 
point repeller.

Another major category of behavior is not representable in such simple 
diagrams but requires a two-dimensional space (three-dimensional including 
time). Suppose we have a beaker of water whose bottom has the positive end 
of a magnet affixed to its center. We then drop a smaller magnet into the bea-
ker with its negative pole facing downward and watch what it does as it falls 
through the water. In figure 4.4A the mobile magnet falls toward the magnet 
on the bottom. If it is placed in the water at exactly the center of the beaker, it 
will remain in this position (actually somewhere above this position) as it falls 

FigurE 4.3. Physical models of a classical attractor and repeller. (A) The marble 
is balanced on top of the hill at equilibrium, but the slightest deviation from that 
point results in continued deviation, corresponding to the situation in figure 4.2. 
(B) The marble is located in the valley, and all deviations from that point result in a 
return to it, corresponding to the situation in figure 4.1.

BA
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through the water. If it is placed somewhere deviant from this position, it will 
fall toward the bottom magnet. Obviously this physical model is identical to 
the example in figure 4.1 except that it is in three dimensions, the horizontal 
two dimensions of the bottom or top of the beaker and the vertical dimension 
that represents time (the position from the top of the beaker to the bottom is 
proportional to the time since the small magnet was dropped into the beaker). 
Just as we could represent the behavior of the system on a line (the ordinates 
in figures 4.1 and 4.2 and the lines below the diagrams in figure 4.3), we can 
do so by looking at just the bottom of the beaker, as shown in the circle below 
each diagram of the beaker in figure 4.4. Figure 4.4A represents an attractor, 
and figure 4.4B represents a repeller.

With the beaker model we can see another class of behavior that is 
extremely important in ecological models. Suppose the beaker is placed on a 
mixing table that creates a vortex in the water. The expectation is that what-
ever is dropped into the beaker will spiral around as it drops through the 
water, as indicated in figure 4.4C. However, as it spirals around it is also 
attracted by the magnet on the bottom of the beaker. For obvious reasons this 
attractor is referred to as an oscillatory point attractor. The parallel behav-
ior of the repelling magnet in swirling water is also oscillatory, but it is a 
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FigurE 4.4. Beaker and magnet model of dynamics. (A) The small magnets in the 
water, with their negative poles pointed downward, are attracted to the positive 
pole of the magnet on the bottom of the beaker. (B) The small magnets are repelled 
from the negative pole on the bottom of the beaker. (C) When the beaker is con-
stantly rotated, the magnet undergoes a spiraling motion as it descends through the 
water toward the positive pole of the magnet on the bottom. (D) When the beaker 
is constantly rotated, the magnet undergoes a spiraling motion as it descends 
through the water away from the negative pole of the magnet on the bottom. The 
circle at the bottom of each diagram illustrates the general behavior of the small 
magnet as viewed from the top (or bottom) of the beaker.
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repeller—an oscillatory point repeller (figure 4.4D). For each of the oscil-
latory points (attractor and repeller) the picture on the bottom of the beaker 
is a spiral (figure 4.4C and D).

Figure 4.5 illustrates how this spiraling behavior looks in a more tradi-
tional diagram of the variables over time. The two dimensions of the beaker’s 
bottom are plotted over time to illustrate that an oscillatory attractor is the 
same as “damped” oscillations, whereas an oscillatory repeller is the same as 
expanding oscillations.

Yet another class of behavior is extremely important in physical as well 
as biological systems. This class requires a different physical model, as illus-
trated in figure 4.6.A. A small hill in the middle of a valley causes a marble to 
roll down the hill but to become entrapped in the valley, rolling continuously 
around the bottom of the valley. The sides of the valley cause any marble 
beginning on that surface to wind down the valley floor, again rolling around 
the bottom of the valley. The ultimate fate of any trajectory is either to move 
to the outer limits of the hill or to wind up cycling forever in the bottom of 
the circular valley (presuming that there is some sort of energy that keeps the 
system in motion). This kind of behavior is known as a periodic attractor, so 
named because at some time in the future the system always returns to the 
same position, which is to say that it periodically returns to any given state. 
Note that the example in figure 4.6A actually includes two periodic cycles, 
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FigurE 4.5. Traditional representations of an oscillatory attractor (A) and an oscil-
latory repeller (B). x represents prey, and y represents predator. The graph of y ver-
sus x is the traditional “phase plane” diagram. The same data are plotted to the 
right as a time series in both variables.
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an obvious one at the bottom of the valley and a not-so-obvious one exactly 
on the outer edge of the valley. That is, it is theoretically possible to have a 
marble cycling around the top of the outer boundaries of the valley, always 
exactly balanced between the force attracting it down to the valley bottom 
and the force attracting it down off of the side of the hill. Obviously this 
limit cycle cannot really be observed because the marble cannot be expected 
to maintain exactly this balance. It is thus an unstable cycle or a periodic 
repeller.

Taking a cross section of this model (figure 4.6B), we arrive at the more 
easily interpretable section pictured in figure 4.7 (such a section is formally 
a Poincaré section). As before, we can summarize the overall behavior of the 
system with little arrows on the line. Here we see three repellers and two 
attractors, although the two attractors are simply two points on the periodic 

BA

Attractors

Repellers

FigurE 4.6. Physical model illustrating a periodic attractor (limit cycle) (see text).

FigurE 4.7. Cross section (Poincaré section) through the surface of figure 4.6, 
showing how the dynamics of the system can be illustrated.
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attractor and the two outer repellers are simply two points on the periodic 
repeller. Thus they are not really equilibrium points, as in previous examples, 
but rather points on an attractor (or points on a repeller).

The final type of qualitatively distinct behavior that is commonly observed 
in ecological models results if we assume that the bottom of the valley is per-
fectly flat. If the beaker model of figure 4.4 has the magnets removed from the 
base or if the hill model of figure 4.6 has its bottom constructed to be abso-
lutely flat, the physical attraction (the magnet in the beaker model, the force 
of gravity in the hill model) has been removed and we theoretically expect the 
system to move around in this space, constrained to be sure but without a ten-
dency to move to the center within that space, as suggested by the model in 
figure 4.8. As before, there are three repellers but no attractors, at least not of 
the sort in previous examples. Yet the entire bottom of the valley will certainly 
attract the marble, and in this intuitive sense it is also an attractor. But here 
we have an attractor that is neither a point nor a cycle but rather an area or 
region. Being a region that attracts all trajectories yet has no tendency within 
it to move to the center (no point attractor), it is thought to be rather strange. 
This is why it is referred to as a strange attractor, and the behavior of a system 
within it is referred to as chaotic.

FigurE 4.8. Poincaré section similar to that in figure 4.7 but with a strange attrac-
tor rather than a periodic attractor. The bottom of the valley is, theoretically, per-
fectly flat, so there is no natural place to which the marble will be attracted. So 
the entire flat region will attract the marble because the walls of the valley still 
slope downward. But once it reaches the floor of the valley, its motion will become 
unpredictable. This is a strange attractor.

Basin of attraction
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boundaries
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Obviously there is a qualitative difference between this type of attractor 
and those discussed previously. There is no particular point to which the sys-
tem ultimately tends but rather an area to which it tends. Furthermore, from 
a practical standpoint we cannot be interested in the final state of the system 
because it has multiple final states (in the sense of a single point). The concern 
really ought to be with the range within which the system will ultimately be 
found, as discussed below.

The class of behaviors illustrated by the simple hills (figure 4.3 and 4.6) or 
the beakers (figure 4.4) are the classical behaviors usually analyzed by engi-
neers. Certainly they are also important points of departure for analyzing 
ecological systems. However, there are other kinds of behaviors, most impor-
tantly those illustrated in figure 4.8, in which the focus is on the range of 
expected values and the persistent changes through time within that range. In 
summary, attractors (or repellers) can be thought of as falling on a gradient 
going from simple point attractors (or stable equilibria, stable nodes, stable 
fixed points—all synonyms—as in figure 4.3) to oscillatory attractors (or sta-
ble foci—still point attractors—as in figure 4.4C) to periodic attractors (also 
called limit cycles) to strange attractors (or chaotic attractors, as in figure 4.8; 
the subject of chaos will be discussed later in this chapter).

One’s interest in analyzing a system depends on the nature of the equilibrium 
state. If a point equilibrium exists, for example, a central question is how to 
locate the exact position of the point and determine whether it is an attractor or 
a repeller. This is the focus of the classical engineering sciences. But if a strange 
attractor exists, the interest is more in locating the position of its boundaries 
and discovering other details about its “morphology,” as discussed later.

One further concept is especially important when dealing with strange 
attractors. The “basin of attraction” is the collection of the values of the state 
variables from which all trajectories eventually wind up exactly on the attrac-
tor. In figure 4.7, for example, the tops of the two largest hills represent the 
outer edges of the basin of attraction for the limit cycle attractor at the bottom 
of the valley, and the small hill in the middle represents the inner edge of that 
basin. The edges of a basin of attraction are always repellers, as is evident in fig-
ure 4.7. The edges of the basin of attraction are not the same as the boundaries 
of a strange attractor. The latter refer to the outer limits that the attractor itself 
can realize, the former to all possible states that eventually reach the attractor. 
Formally speaking, the attractor (and its boundaries) is a subset of the basin of 
attraction but not the reverse (see, for example, figure 4.8).

Classical ecological theory has dealt mainly with point attractors and 
to some extent with periodic attractors. Only with the advent of nonlinear 
dynamics as a theoretical science has there been a realization that the alter-
native type of equilibrium and stability actually exists, that is, the strange 
attractor. Such attractors become more common in the literature as old mod-
els are analyzed more completely and especially as new model situations are 
explored. These attractors have also received considerable attention sim-
ply because they are sometimes called chaos or chaotic attractors. This un-
fortunate choice of terminology will be further discussed later in this chapter. 
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For now suffice it to say that a strange attractor, because of its so-called cha-
otic motion, is unpredictable in a very special technical sense. This fact has 
caused considerable unnecessary consternation among those who seek to pre-
dict natural phenomena and has led to a small cottage industry of research-
ers attempting to show that particular data sets do or do not represent true 
chaotic behavior. However, the importance of the issue lies not with the dis-
tinction between chaos and nonchaos, despite what popular articles contend, 
but rather with the distinction among point, periodic, and strange attractors, 
three positions on a continuum from point to strange, as discussed above. In 
the case of point attractors we are concerned with the location of the equi-
librium and its stability properties. In the case of strange attractors we are 
concerned with their boundaries and qualitative behaviors, their morphology.

EXErcisEs

4.6 The basic exponential equation describes the dynamics of a single population, which 
means that it is a dynamic system in one dimension. Its only equilibrium value is 
N* = 0. Draw the state space (a line), showing with small arrows the dynamical nature 
of the system near the equilibrium point. Make a graph of the derivative (dN/dt) as a 
function of N for r = 1.0 and 1.5.

4.7 The logistic equation also describes the dynamics of a single population but with two 
equilibrium points, K and 0. Draw the state space showing the dynamical nature of the 
system near the equilibrium points. Make a graph of the derivative (dN/dt) as a func-
tion of N for r = 1.0, K = 1.2; for r = 1.5, K = 1.2; and for r = 1.5, K = 1.8.

4.8 If you have a single population model based on a single well-behaved ordinary differ-
ential equation and it has five equilibrium points and diverges to infinity at very large 
values, what must the collection of vectors (formally called the vector field) look like 
(again, on a single line, the relevant state space)? Sketch what you think a graph of  
dN/dt versus N would look like.

4.9 Assume that a population is growing according to the logistic equation. To make 
things simple, presume that the value of both r and K is 1.0 (i.e., we represent the pop-
ulation as varying between 0 and 1). The equilibrium value of that population will be

0 = N − N2,

 which is a quadratic equation and has two roots, which are, by inspection, 0 and 1. 
Now suppose that a manager decides to impose a fixed harvesting rate on the popula-
tion such that a constant number of individuals will be removed each year. A sensible 
model for this situation would be

dN
dt  = N(1 − N) − NF,

 where NF is the fixed number (actually the proportion) of individuals removed. Plot 
the derivative versus N for the following values of NF: 0, 0.25, and 0.5. Also, directly 
solve for the roots (using the quadratic formula; remember, NF is a constant). What do 
you conclude?
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Eigenvalues: a Key concept in dynamic analysis

Consider a simple point attractor in one dimension. As above, we can rep-
resent its qualitative dynamics by drawing the state space (a line) and indicat-
ing where the point is in that space (on that line) and then adding the vector 
field (small arrows indicating the direction and rate of change), as presented 
in figure 4.9.

If we now rotate the vectors 90 degrees, either upward to illustrate an 
increasing vector or downward to illustrate a decreasing vector, we get the 
picture shown in figure 4.10. If we connect the tips of the rotated arrows with 
a line, the slope of that line is called the eigenvalue. With this formulation (fig-
ure 4.10) it is evident what the eigenvalue means in this case; it is the rate at 
which the system approaches a point attractor (or leaves a point repeller, if 
the rotated arrows go in the opposite direction).

To relate the general concept of eigenvalues to population-dynamic mod-
els, recall the exponential equation from chapter 1,

dN
dt  = rN.

This is a system of one dimension (a single variable, N), and thus its state 
space and dynamics are as in figure 4.9. The equilibrium point is at N = 0, so 
the left side of the state space does not exist for this model. Suppose that r < 0, 

Point attractor

Slope 5 λ

FigurE 4.10. The vectors of the example from figure 4.9 rotated. The vectors to the 
right of the point attractor are decreasing, so we rotate them downward (decreas-
ing). The vectors to the left of the point attractor are increasing, so we rotate them 
upward (increasing). Then we connect the arrowheads with a line. The slope of the 
line is the eigenvalue of the point attractor.

FigurE 4.9. State space for a one-dimensional (one-variable) model, illustrating a 
single point attractor and its vector field (the collection of arrows indicating the 
dynamics of the system).
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which is to say, a declining population, one that will eventually go locally 
extinct. A plot of dN/dt versus N will look something like the right side of 
figure 4.10 with the slope = r. That is, because the vectors represent dN/dt at 
particular values of N, rotating them 90 degrees is the same as plotting them 
on the y axis. Thus we see that, in this example, the eigenvalue of the attrac-
tor is r (because a plot of dN/dt against N is linear in the case of the exponen-
tial equation).

If the population is growing (r > 0), the result is qualitatively different in 
that the arrows will all be pointing away from the equilibrium point, that is, 
the point is a repeller (the equilibrium point is still zero). Thus the arrows to 
the right of the point will be rotated clockwise (the opposite of what we see in 
figure 4.10), and again the part of the graph to the left of the point does not 
exist for this model. The line connecting the arrowheads will thus have a pos-
itive slope, which means a positive eigenvalue.

Now, suppose that we have a population growing according to the logis-
tic equation. Its dynamics (again in one dimension) will look something like 
what is pictured in figure 4.11.

Here we have two equilibrium points, one an attractor at the carrying 
capacity and one a repeller at the value of zero. If we now rotate the arrows, 
as before, we obtain the graph shown in figure 4.12.

Here there is no simple slope to the line, but in the neighborhood of each 
of the equilibrium points we can approximate the curve with a straight line, 
and the slope of that straight line is the eigenvalue associated with the equi-

0

Carrying capacity 5 K

FigurE 4.11. State space for a one-dimensional model based on the logistic equation. 
There are two equilibrium points, one an attractor (K), the other a repeller (0).

FigurE 4.12. Dynamics of the logistic equation in one dimension, with the changes 
in the derivative graphed as the ordinate.
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—
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librium point. For example, consider the equilibrium point at the carrying 
capacity (K). The slope of the curve at that point is simply the derivative with 
respect to N of the derivative with respect to time, evaluated at K, or

d 1dN
dt 2

dN  = r − 2rN
K

.

Substituting K for N (because the slope is the derivative evaluated at K), we 
obtain

d 1dN
dt 2

dN
*
N=K

 = r − 2rK
K

 = r − 2r = −r.

which tells us, first, that the point K is an attractor (because the eigenvalue, 
−r, is negative) and second, that the rate of approach to that equilibrium will 
be −r. A similar procedure applied at the other equilibrium point (0) gives an 
eigenvalue of r, showing that it is a repeller (because r is positive) and that the 
rate of deviation from it is r.

Note that the eigenvalues computed for the projection matrices of the pre-
vious chapter have precisely the same qualitative meaning as in the present 
chapter. However, earlier we discussed only the computation of eigenvalues 
for a matrix with constant values, in which case the population was always 
an exponential population with a single equilibrium point at zero. If the pop-
ulation was growing, its largest eigenvalue was positive and it was growing 
at a rate equal to the value of that eigenvalue. A negative dominant (largest) 
eigenvalue indicated, as it does here, that the equilibrium point is an attractor, 
which means that the population is declining, and the rate of that decline is 
the value of that eigenvalue. So we see that the dominant eigenvalue of a pro-
jection matrix (without density dependence) is precisely the same as the eigen-
value of the exponential equation, r.

In two or more dimensions (i.e., when we have two or more species inter-
acting, so two or more state variables), the situation is a bit more compli-
cated. In two dimensions the state space is the plane, and we must examine 
the dynamics of the system in that plane in a third dimension. We have already 
looked at this issue in a very qualitative way in figure 4.4 (the first two panels, 
representing the stationary beaker), where the fixed magnet either attracted 
or repelled the falling magnet. We now examine the two-dimensional case in 
more detail. Consider the physical model in figure 4.13. A marble rolling on 
this surface will eventually wind up at the point where the two folds intersect, 
but there will be a bias in that most of the time it will roll down along the fold 
labeled A. It would be possible for it to roll directly down fold B and arrive 
at the equilibrium point, but this would be very unlikely because that fold is 
a knife edge on which the marble would have to balance as it rolled down.

For heuristic purposes it makes sense to ask what would happen if the 
marble began exactly on the fold A. Now we can represent the system in a 
single dimension, a dimension along fold A, and look at the dynamics along 
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this fold as if it were a one-dimensional system. Thus the analysis reverts 
exactly to the one-dimensional analysis we did in figures 4.9–4.12 above. And 
indeed the rate of change of the rate of change along this fold is an eigenvalue.

But there is still the theoretical possibility that the marble will balance on 
fold B and, like a tightrope walker, roll down, precariously balanced, until it 
reaches the equilibrium point. As unlikely as that may seem, we can still ana-
lyze it mathematically using the graphical method we used in figures 4.9–
4.12. Again we come up with a measure of the rate of change of the rate of 
change as we approach the equilibrium point, and that rate is an eigenvalue. 
Thus we see how, when we have two dimensions, we have two eigenvalues. 
Indeed it is the case that there will always be as many eigenvalues as there are 
dimensions in the system.

Here we see the significance of the “dominant” eigenvalue. It is the value 
of the rate of change of the rate of change along the dominant fold (fold A in 
figure 4.13), that is, the rate at which the system will approach the equilib-
rium point as it gets close to it. There will always be one collection of points 
(a “fold”) along which the marble will eventually tend, and that collection of 
points defines the one-dimensional system that is used to calculate the domi-
nant eigenvalue (see figures 4.9 and 4.10).

In figure 4.14 the three possible configurations in two dimensions are illus-
trated, along with the eigenvalue states, a point attractor when both eigenval-
ues are negative, a point repeller when all the eigenvalues are positive, and a 
“saddle” point when one eigenvalue is negative and the other positive. Clearly, 
an examination of the signs of the eigenvalues provides a definitive statement 
as to which of the situations exists. Two positive eigenvalues indicate a simple 

Fold A

Fold B

FigurE 4.13. Physical model of the dynamics of a point attractor in two 
dimensions.
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point repeller, two negative eigenvalues indicate a simple point attractor, and 
a positive and a negative eigenvalue indicate a different kind of repeller. Note 
that in the latter case the point is approached from some lines and repelled 
along other lines, much as a marble would be when rolling along the surface 
of a saddle. For this reason, this sort of equilibrium is referred to as a saddle 
point repeller.

So far our presentation has been largely graphical and heuristic. In reality, 
for a given model simple recipes exist for finding the eigenvalues of a system 
at a point (indeed, in the contemporary world a few keystrokes or pointing 
and clicking on the “find eigenvalue” button is usually the way to do it). Fre-
quently the eigenvalues turn out to be simple real numbers and one merely 
has to compare them to zero to determine the qualitative nature of the point. 
But sometimes they turn out to be complex numbers, that is,

λ = r + ci,

where i is the square root of –1. Thus there is a real part (r) and an imag-
inary part (c). There is no convenient way of explaining exactly why, but 
the fact is that oscillatory systems (e.g., the swirling beaker model of figure 
4.4C, D) have eigenvalues with nonzero imaginary parts. The parallel graphs 
of the ones already made in figure 4.14 are shown in figure 4.15 for oscilla-

A

λ1 , 0

λ2 , 0

λ1 . 0

λ2 . 0

λ1 . 0

λ2 , 0

B C

FigurE 4.14. Conditions of eigenvalues for the three most common qualitatively 
distinct arrangements in two dimensions. (A) Point attractor. (B) Point repeller.  
(C) Saddle point repeller.

λ1 5 r1 1 c1i

λ2 5 r2 1 c2i

r1 , 0

r2 , 0

c1 fi 0

c2 fi 0

r1 . 0

r2 . 0

c1 fi 0

c2 fi 0

FigurE 4.15. Conditions of eigenvalues for the two most common qualitatively 
distinct arrangements in two dimensions when the eigenvalues have nonzero 
imaginary parts.
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tory point attractors and repellers. It is a simple rule that nonzero imaginary 
parts of the eigenvalues mean that the system is oscillatory, and the oscilla-
tions wind down to the equilibrium point if the real values are negative and 
wind away from the point if the real values are positive.

EXErcisEs

4.10 In chapter 1 (exercise 1.17) you used the logistic map to project the population 50 
times with values of λ = 1.5, 2.0, 3.0, and 3.5. Do the same for λ = 3.4, 3.5, 3.56, 
3.565, and 3.567, starting with 0.8 individuals and projecting 100 time steps. Note 
that at the end of the run the numbers tend to repeat themselves in a regular sequence. 
For example, for λ = 3.4 the numbers go from 0.452 to 0.842 and then back again 
to 0.452, which is to say that there is a two-point cycle. How many points are in the 
cycles at the ends of the runs of the other values of λ? Plot the numbers in a particular 
cycle versus the value of λ that gave those numbers.

4.11 Add to the graph of 4.10 the cycles for λ = 3.43, 3.455, and 3.53.

4.12 Add to the graph of 4.11 the cycle (approximate cycle) for λ = 3.6.

basic concepts of Equilibrium and stability in one-dimensional maps

So far we have focused on models in continuous time and, although we didn’t 
show them explicitly, these are based on differential equations. Although the 
same basic dynamical concepts apply to models in discrete time using differ-
ence equations, the development and rules are actually quite different. Let us 
suppose that a reasonable model of population dynamics is a mapping from 
one time period to the next, which is to say that the population density at this 
point in time is some multiple of what it was in the previous time period. That 
is, if Nt is the population density at time t, we have, for example,

Nt+1 = λNt, (1)

where λ is, at this point, an arbitrary constant. This is an alternative way of 
expressing the exponential growth of a population. The relationship between 
this form and the differential equation form of chapter 1 is as follows. From 
the equation

dN
dt  = rN,

integrate to obtain

Nt = N0ert, (2)

which means we can also write

Nt+1 = N0er(t+1) = N0erter.

Substituting from equation 2, we have

Nt+1 = Nt er,



98 Chapter 4

and letting λ = er we substitute to obtain equation 1, making it obvious that 
the one-dimensional map is exactly equivalent to the more traditional differ-
ential equation. Recall from chapter 1 that we began with the discrete form 
and derived the continuous form. Here we just do the reverse.

The One-Dimensional Map

The one-dimensional map (one-dimensional because only one dynamic state 
variable is under consideration) is a convenient modeling technique, espe-
cially because of its obvious graphical interpretation: it is possible to rap-
idly gain an idea of the dynamic behavior of a model simply by glancing at 
a graph. A one-dimensional map applies to those systems that can be repre-
sented as the projection of a variable from one time unit to the next. First con-
struct a graph of the population density in year t + 1 versus the population 
density in year t. Suppose, for example, that the population density beginning 
in year 1997 is 10 and in subsequent years it is 20, then 40, then 80, then 100, 
then 110. That is, N1997 = 10, N1998 = 20, N1999 = 40, etc. To graph the num-
bers in the style of a one-dimensional map we first graph 10 on the abscissa 
and 40 on the ordinate, then 40 on the abscissa and 80 on the ordinate, then 
80 on the abscissa and 100 on the ordinate. In doing so we are essentially 
making a graphic form of the number series 20, 40, 80, 100, 110. We know 
that the number 20 projects into 40, and drawing a vertical arrow from 20 on 
the abscissa to the intersection of a horizontal arrow from the value of 40 on 
the ordinate is simply a graphic statement of this fact (that 20 projects into 
40). We now wish to project from 40, in which case we simply draw a similar 
arrow from 40 on the abscissa to the point where it intersects the value of 80 
on the abscissa. The first projection (from 20) yielded 40, and we sought to 
initiate the second projection from this value of 40. This is a general rule. The 
next projection always begins where the previous projection left off. How 
can we know where that initiation is? We can obviously simply search for the 
ordinate value on the abscissa (i.e., after the first projection from 20 to 40, we 
search for 40 on the abscissa so as to make the second projection). But that 
search is made graphically much simpler if we draw a reference line beginning 
at zero for both abscissa and ordinate and rising at a 45 degree angle to the 
axes. This enables us to take the original projection and reflect it back to the 
45 degree line. It is simply a graphic technique for locating the projected value 
on the abscissa so that it can be projected into the next time period. This 
whole example is illustrated in figure 4.16.

This simple example can now be generalized. Instead of using specific 
numbers, we may write a general rule of projection. For example, N at time t 
will become N + 5 at time t + 1 (Nt+1 = Nt + 5), or N next year will be twice 
the value of N this year (Nt+1 = 2Nt), or N next year depends on the value 
of N this year, that is, N next year is a function of N this year (Nt+1 = f(Nt)). 
Although it is frequently possible to state the exact relationship between N 
this year and N next year, in the absence of that knowledge it is also use-
ful simply to be able to draw the general shape of f, which is frequently pos-
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sible only from qualitative knowledge of how the system behaves. But the 
stair-stepping procedure is still the same. Instead of projecting from 20 to 
40 (as in the above example), project from an arbitrary starting point on the 
abscissa to the graph of the function. Then locate that projected value on the 
abscissa by reflecting it back to the 45 degree reference line and project it to 
the graph of the function again. This process is illustrated in figure 4.17.

The general rule, which is then repeatedly iterated, is project to the func-
tion, reflect to the reference line, project to the function, reflect to the refer-
ence line, and so on. After a short practice session, the general qualitative 
dynamics of almost any one-dimensional map can be rapidly visualized with 
a simple glance at the graph.

In figure 4.18, equation 1 is graphed along with the classical stair-stepping 
technique that can be used to quickly visualize the dynamics of the system. 
Where the graph of the equation crosses the 45 degree line, an equilibrium 
point exists. For equation 1 (the exponential equation), that equilibrium is at 
zero. If λ > 1.0, the particular nature of that equilibrium is unstable, because 
any value of N close to the point (i.e., the equilibrium N = 0) will deviate 
away from it. If the point were set at exactly N = 0, a glance at equation 1 
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Step One:
Project from
20 to 40.

Step Two:
Locate the value
of 40 on the
abscissa either by

Step Three:
(A) Project from 40 to 80 and then
(B) re�ect back to the reference
line so as to locate the position of
80 on the abscissa in preparation
for the next projection.

(A) swinging the 
value of 40 around 
from the ordinate 
to the abscissa,

(B) re�ecting the value of
40 back to its position on
the abscissa, using the
45 degree reference line.

FigurE 4.16. Step-by-step illustration of the process of stair-stepping using numeri-
cal values for a one-dimensional map.
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shows that it would stay there forever. But the slightest increase from zero 
(e.g., N = 0.0000001) means that the population will grow and thus deviate 
from the equilibrium point.

Now suppose that at each time interval a constant number of individuals 
migrates into the population. Suppose that the number is m, thus transform-
ing equation 1 into

Nt+1 = λNt + m. (3)

A graph of equation 3 is presented in figure 4.19 (assuming that λ < 1.0). 
Once again the point at which the graph of the equation crosses the 45 degree 
line is an equilibrium point (setting N at exactly that point, which in this case 
is m/(1 − λ), results in the same value of N for every future time period). This 
time, however, the equilibrium is a stable one, as illustrated in figure 4.19. 
Whatever the initial population size, the tendency will be to return to the 
value of m/(1 − λ), the equilibrium state, which is thus an attractor.

Now assume that, instead of there being regular immigrants into the 
population, a predator population exists in the habitat, and that predator 
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FigurE 4.17. Step-by-step projection using a function rather than numerical values.
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P3

P1 P2

P2

Nt11

Nt

Finding the value of P2
on the abscissa is most
easily done by re�ecting
it back to the 45 degree
reference line.

45 degree
reference line

Graph of equation 1
(Nt11 5 λNt)

Value P2 must
be placed on the
abscissa so as to
project up to 
the graph of the
equation to �nd
the value P3. 

FigurE 4.18. Exponential equation presented as a one-dimensional graph. The 
qualitative dynamics of such a system are easily visualized with the stair-stepping 
technique. Beginning at point P1, go up to the graph of the equation to reach P2 on 
the ordinate. The ordinate value P2 must then be positioned on the abscissa, which 
is most easily done by reflecting it to the 45 degree reference line (dashed arrow), 
which indicates its position on the abscissa. From P2 on the abscissa, go up to P3 
and repeat the process (see figures 4.16 and 4.17).

Nt11

Nt

45 degree
reference line

Graph of equation 3
(Nt11 5 λNt 1 m)

m

FigurE 4.19. Graph of equation 3, illustrating a point attractor. The stair-stepping 
technique is the same as in figures 4.17 and 4.18. Any initiating point either above 
or below the attractor (where the graph of the function crosses the 45 degree refer-
ence line) eventually approaches that point. It is thus a point attractor, because any 
deviation from it will automatically revert to it.
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population does not change as a function of the prey density. Thus a constant 
number, p, of individual prey organisms will be taken out of the population in 
each time unit, and the appropriate equation is

Nt+1 = λNt − p, (4)

which is graphed in figure 4.20 (with the assumption that λ > 1.0). Note that 
the equilibrium point is p/(λ − 1), and it is an unstable one, making the point a 
repeller, just as the zero equilibrium point was unstable for the original expo-
nential equation (equation 1).

These two simple modifications to the basic exponential equation are both 
linear. However, most ecological processes of interest are known to be non-
linear, so it makes sense to modify equation 1 in a nonlinear fashion, too. 
The most elementary nonlinearity would be to assume that the parameter 
that multiplies the variable of interest (i.e., λ in equations 1, 3, and 4) is itself 
a function of the variable. If we assume that the parameter λ is a decreasing 
function of N (i.e., that the growth of the population depends on its density—
recall density dependence from chapter 1) and furthermore that the exact 
function is λ − λN (i.e., the λ in equations 1, 3, and 4 becomes λ − λN), the 
exponential equation (equation 1) becomes

Nt+1 = λNt(1 − Nt). (5)

In figure 4.21, equation 5 is graphed for two different values of λ. From the 
simple stair-stepping graphic technique it is obvious that both cases pictured are 
oscillatory. That is, at successive intervals the population alternately increases 
and decreases, as illustrated in the diagrams beneath the stair-stepped graphs. 
The difference between figure 4.21A and 4.21B is the difference between an 
oscillatory attractor (figure 4.21A) and an oscillatory repeller (figure 4.21B).

Nt11

Nt

Graph of equation 4
(Nt11 5 λNt 2 p)

FigurE 4.20. Graph of equation 4, illustrating an unstable equilibrium. The 
stair-stepping technique is the same as in figures 4.17, 4.18, and 4.19. Any point 
deviating only slightly from the equilibrium will continue deviating. It is thus a point 
repeller, because any deviation from it will continue deviating (it “repels” all values).
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EXErcisEs

4.13 Graph Nt+1 versus Nt for the logistic map for λ = 3.4, 3.5, 3.56, and 3.6. Print out your 
graphs and make a pencil-and-paper stair-step diagram illustrating the dynamics of 
each graph. Compare these dynamics to those for the equivalent values of λ from exer-
cises 4.10, 4.11, and 4.12.

4.14 The Ricker map is given generally as

Nt+1 = λNte1–bNt.

 Plot Nt+1 versus Nt for λ = 6, 5, 4, and 3 with corresponding b = 2, 3, 4, and 5. Print out 
your graphs and make a pencil-and-paper stair-step diagram illustrating the dynamics 
of each graph.

4.15 Set up an Excel sheet to generate a logistic map with λ = 4. The first step should look 
like this:

FigurE 4.21. Graphs of equation 5. (A) Oscillatory attractor. (B) Oscillatory repeller. 
In both A and B the graph below the main graph illustrates the behavior of the 
variable through time.

NtNt

Nt

Nt11 Nt11

Nt

A B

Time Time
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 Now set up a second column that simply reproduces the first one. Your sheet should 
look like this:

 Now plot column A (labeled N) against N′, which, of course, will yield a graph of all 
the points on the 45 degree line. Now take the sixth entry, which is equal to 0.5854, 
and retype it into the sixth position in column B (labeled N′) (i.e., in place of the for-
mula, directly type 0.5854). What happens to the graph? Why?

4.16 Modify the logistic map by subtracting a constant number (recall exercise 4.9), as 
might be done by a naïve manager. Let λ = 3.5, and subtract 0.25 individuals at each 
time step. Create a plot of Nt+1 versus Nt and project the population 50 time units. 
Repeat for λ = 4, then for λ = 4.55.

4.17 For the modified logistic map of exercise 4.16, set λ = 4.556 and iterate over 200 time 
periods, beginning with an initial population of 0.3 and graph the time series (be sure 
to force your graph from 0 to 1).

Figures 4.19–4.21 summarize the classical notions of equilibrium and sta-
bility in one-dimensional maps. A single point is the equilibrium point, and 
it may be an attractor (stable) or a repeller (unstable), oscillatory or non-
oscillatory. Because we are now dealing with discrete space rather than con-
tinuous space, the eigenvalue rules as elucidated in the previous section do not 
directly apply. The eigenvalue here is the slope of the function as it crosses the 
45 degree line, with dynamics as summarized in figure 4.22, where it should 
be evident that an eigenvalue greater or less than 1 or −1 stipulates the qual-
itative nature of the equilibrium point. If the eigenvalue is >1 the system is a 
point repeller. If the eigenvalue is < 1 but > 0 the system is a point attractor. If 
the eigenvalue is <0 but > −1 the system is an oscillatory attractor. If the eigen-
value is <−1 the system is an oscillatory repeller.

If the system generates a strange attractor (or, for that matter, a permanent 
cycle), ideas of point attractors and repellers are useless, despite the fact that 
point repellers are always contained within strange attractors. For example, 
in figure 4.23 three cases are illustrated in which the critical equilibrium point 
(where the graph of the equation crosses the 45 degree line) is a repeller. How-
ever, knowing that the equilibrium point is a repeller provides us with scant 
information on what is interesting about the behavior of the system. Indeed, 
what is important in this case is the distinction between A and B on the one 
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hand and C on the other. Cases A and B will persist indefinitely (i.e., are sus-
tainable), whereas in case C the variable is extinguished from the system (the 
population goes locally extinct). If this were, for example, the population of 
an introduced natural enemy in an agroecosystem, we would care little that 
the population is theoretically unstable (i.e., its equilibrium point is unstable). 
Rather we would be concerned with whether the new natural enemy would 
persist in the environment, that is, whether we were dealing with, on the one 
hand, the situation in figure 4.23A or B or, on the other hand, with the situa-
tion in figure 4.23C. Our interest here would be not in the equilibrium point 
itself but in the limits, or boundaries, of the system. These boundaries are 
illustrated by dashed lines intersecting the two axes in figure 4.23A and B.

A further word is in order regarding the difference between the patterns in 
figure 4.23A and B. Figure 4.23A is classically known as an n-point cycle (the 
particular value of n in figure 4.23A is 2, because there are two actual values 
of N that repeat themselves forever, as indicated by the dashed lines cross-
ing the axes). It is the one-dimensional equivalent of the classical limit cycle 

Point
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Point
Attractor

Oscillatory
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Oscillatory
Repeller

λ . 1 1 . λ . 0 0 . λ . 21 λ , 21

1.0

1.0 1.0 1.0
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Nt11
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Nt11

1.0

Nt11

Nt Nt Nt

FigurE 4.22. Eigenvalue values for the various forms of stability in a one- 
dimensional map. The dotted line is the 45 degree reference line, and the solid line 
is the function (illustrating that part of the function near to its crossing with the 45 
degree line).

FigurE 4.23. Graphs of equation 5. (A) A two-point periodic attractor (λ = 3.1). (B) A strange 
attractor (λ = 3.8). (C) An oscillatory repeller, leading to extinction of the population (λ = 4.2). In 
cases A and B the population has a repeller (is unstable) where the function graph crosses the 45 
degree line, but in both cases the repeller is constrained by dynamic boundaries. Cases A and B are 
thus referred to as regionally stable.
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in the context of differential equations. Figure 4.23B represents an example 
of chaos, better termed a strange attractor. The equilibrium point is unsta-
ble, yet there is no single n-point cycle, and trajectories generally move in a 
totally unpredictable direction, giving rise to the popular appellation chaos. 
An enormous literature is devoted to the analysis and significance of the dif-
ference between the pattern in figure 4.23A and that in 4.23B (e.g., Ellner 
and Turchin 1995; Hastings et al. 1993). To some extent that literature has 
been misdirected. The key question seems to have become whether ecologi-
cal systems are chaotic. But to understand ecological systems it is not clear 
how knowing whether a system is chaotic or has a 50-point cycle will make 
much of a difference! True, a chaotic system is in theory unpredictable, but in 
practical fact an n-point cycle is just about as unpredictable if n is relatively 
large. On the other hand, in both figure 4.23A and figure 4.23B there are clear 
structures to the trajectories. Both are fundamentally oscillatory, even though 
the peaks of the oscillations do not repeat themselves exactly each year in the 
case of 4.23B and, most importantly, both have limits that they will never 
transcend (in a strictly deterministic world).

These limits are essentially identical to what Lewontin (1969) has referred 
to as dynamic boundedness. They define a section of the state space into which 
all nearby trajectories will eventually enter but that no trajectory can ever exit. 
Because all nearby trajectories must enter this space, the space itself is called 
an attractor, even though the equilibrium point within that space is unstable. 
Whether an attractor is strange or periodic will not be an important focus of 
the rest of this chapter. The significant practical feature for understanding eco-
system dynamics is the location of the boundaries and the qualitative structure 
of the dynamics, for both periodic and strange attractors (and repellers). Thus 
the important question to be asked of an unstable point is whether the nonlin-
earities of the system create boundaries around that point, thus making it either 
a periodic or a strange attractor. If not, the system will extinguish itself.

Stability and Equilibrium in the Logistic Map

The logistic map (as equation 5 is usually called), can be used to illustrate 
these and other simple ideas in a straightforward manner. The equilibrium 
point is

N* = (λ − 1)/λ

(there is another, trivial, equilibrium point at N* = 0). This means that λ must 
be greater than 1.0 to have a positive equilibrium point, and the equilibrium 
will be stable and nonoscillatory whenever the derivative of the function, 
evaluated at the equilibrium point, is greater than 0 (these conditions, and 
the ones that follow, should be clear after a detailed examination of the graph 
of equation 5 in figure 4.21; note especially that here the parameter λ is not 
equal to the eigenvalue, as it was in the case of the exponential equation). 
That is, differentiating equation 5, we obtain

(dNt+1/dNt) = λ − 2λNt,
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which, when evaluated at the equilibrium point (i.e., substitute Nt = (λ − 1)/λ), 
is

(dNt+1/dNt) = λ − 2λ[(λ − 1)/λ] = λ − 2λ + 2 = 2 − λ,

in which case we see that as long as λ < 2 the equilibrium point will be a simple 
nonoscillatory attractor (note that the case of an unstable nonoscillatory point, 
as shown in figure 4.20, is not possible with this model). When λ > 2, the system 
will be oscillatory. It will have an attractor if the derivative of the function eval-
uated at the equilibrium point is greater than −1. Thus

2 – λ > −1

or

2 < λ < 3

indicates an oscillatory attractor, and

2 − λ < −1

or

λ > 3

indicates an oscillatory repeller. Note that the value of the eigenvalue is 2 − λ, 
making these observations consistent with the eigenvalue conditions of figure 
4.22.

The existence of an oscillatory repeller when λ > 3 leads to the further 
question of how to distinguish between persistence (cases A and B of figure 
4.23) versus extinction (case C of figure 4.23). Extinction will occur when the 
projection from the maximum value of the map falls on the x-axis at a point 
greater than the intersection of the function (see figure 4.24).

1.0 1.0Nt Nt

A B

1.0 1.0

Nt11 Nt11

FigurE 4.24. The difference between stability and instability in the regional sense. 
(A) Regionally unstable, the population will go extinct. (B) Regionally stable, the 
population will persist (albeit in a chaotic state). In both cases, the equilibrium 
point is unstable in the neighborhood sense.
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From an examination of the logistic map (equation 5) we see that the func-
tion intersects the abscissa at 0 and 1. Thus extinction of the system will occur 
when the projection from the peak of the map touches the x-axis at a point 
greater than 1 (see figure 4.24A). The peak occurs at Nt = 0.5, so its projec-
tion (from equation 2) will be

Nt+1 = λ(0.5)(1 − 0.5) = 0.25λ,

and the condition for extinction is thus

0.25λ > 1,

λ > 4.

When we combine this information with the earlier observation that the sys-
tem will have an oscillatory (either periodic or strange) attractor whenever

3 < λ < 4,

we can say that the system will be sustainable as long as λ is between 1 and 
4, even though the classic conditions for stability fail for λ > 3. Although 
the specific development in this chapter is associated with the density of a 
single population, the same dynamic rules apply if the state variable is some 
other interesting variable. For example, N might be the yearly production of 
manure from a dairy farm or the soil organic matter in a forest system or so 
forth. If we presume that equation 5 represents the system, we can unambig-
uously define sustainability as 1 < λ < 4. The trick, of course, is that equation 
5 is normally too simple to accurately represent anything as complicated as 
organic matter or manure (or even population density), and we use it here for 
didactic purposes only.

The upper and lower boundaries of the system are easily calculated. The 
upper limit is simply the peak of the function

Nt+1 = λ(0.5)(1 − 0.5) = 0.25λ,

and its projection,

Nt+1 = λ(0.25λ)(1 − 0.25λ) = 0.25λ2 − 0.0625λ3,

is the lower limit. Again, depending on the context, such boundaries may be 
of tremendous interest. For example, if N is the population density of a pest 
insect and the damage threshold is known (say it is D), the population will 
never be a pest if 0.25λ (the upper threshold) is less than D. Thus λ < 4D 
exactly stipulates the conditions under which this population will be an occa-
sional pest.

Basins of Attraction in the Logistic Map

For most simple models of ecological processes it has been possible to sim-
ply analyze the equilibrium point(s) and leave it at that. Most ecologists now 
admit that more complicated models are necessary to reflect even the simplest 
ecological phenomena. With even slightly more complex models we face a sit-
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uation in which alternative equilibria exist in the same model. For example, if 
we combine the ecological principle that led to equation 4 with that which led 
to equation 5, we obtain

Nt+1 = λNt(1 − Nt) − p for Nt > 0, (6a)

where λ is again the rate of population increase and p is the number of indi-
viduals removed from the population during each time unit by a constant 
predator. To make equation 6a relevant to ecological processes, we restrict its 
application to Nt > 0 and add the equation

Nt+1 = 0 for N < 0. (6b)

This condition simply acknowledges that there can be no values of N less 
than zero (assuming the running example of N signifying the population den-
sity of an insect pest; other variables may take on negative values, in which 
case the special condition for N < 0 would not be necessary). Equation 6 is 
graphed in figure 4.25. There are three equilibrium points, given as

N* = 0 (from equation 6b), (7a)

N* = [(λ − 1)/2λ] + {[(λ − 1)/2λ]2 − p/λ}1/2, (7b)

and

N* = [(λ − 1)/2λ] − {[(λ − 1)/2λ]2 − p/λ}1/2. (7c)

Inspecting figure 4.25, we see that the central equilibrium point is a repeller 
and the lower one (at N = 0) is an attractor, as is the upper one. Although 

0

Basin for upper equilibrium

Basin for lower equilibrium

10

Nt11

FigurE 4.25. Graph of equation 6, illustrating the two basins of attraction for the 
two point attractors.
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knowing the locations of the equilibrium points is important, another feature 
of figure 4.25 is important to understand the population dynamics. Any value 
of N near to but greater than the repeller will eventually approach the upper 
attractor, whereas any point less than the repeller will eventually approach 
the lower attractor. The repeller thus separates the state space (all possible 
values of N) into those values that approach the upper attractor and those 
values that approach the lower attractor (this is only approximately true, as 
discussed in the next paragraph). The unstable point in this context is referred 
to as a separatrix, and the collection of points on either side of it is a basin 
of attraction. The basin of attraction refers to the section of the relevant state 
space in which all trajectories approach a given attractor. This question of 
which of the initial values will eventually reside in particular locations in the 
state space may turn out to be far more important for analyzing ecosystems 
than is the traditional question of the exact location of the equilibrium point 
and whether it is stable (see, for example, Scheffer et al. 2009).

This issue is a bit more complicated in the case of the logistic map when 
the value of λ is very large. Very high values of N, because of the strong den-
sity dependence of the logistic model, will be projected to values of N less 
than the separatrix. Thus there is a section of the lower equilibrium’s basin of 
attraction that exists at very high values of N, in addition to the obvious one 
that exists at lower values of N, as discussed later.

EXErcisEs

4.18 Generate a time series using the formula for density-dependent population growth of 
Bleasdale and Nelder (1960) and Hassell (1975),

Nt+1 = 
λNt

1 + Nt
b
,

 setting λ = 5 and b = 4 and reiterating for 50 time units. Create a graph of the function 
from the equation, and experiment with other values of λ and b (in the spreadsheet, fix 
λ and b separately, then generate both the function graph and the time series).

4.19 Repeat exercise 4.18 but with λ = 1 and b = 1. Experiment with a variety of values of 
b. What do you conclude about the qualitative behavior of the model with respect to 
variation in the parameter b (try b = 1, 1.5, and 0.5, for example)?

structural stability

A notion of stability totally distinct from that discussed so far may arise when 
parameters undergo change. That is, in all the above examples, the state vari-
able (Xt or Yt or Nt), the one that is dynamic, which is to say the one that var-
ies through time, is clearly distinguished from the parameters, which do not 
vary through time. For example, in equation 6a, Nt is the state variable, while 
λ and p are parameters. For purposes of analysis we presume that Nt varies 
through time, while λ and p do not.
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A different sort of analysis emerges when we ask what happens when λ 
and p themselves vary within a distinct time frame. For example, Nt may vary 
in ecological time while λ changes slowly as evolution forces change in its 
value, and p may change as the resident predator population slowly increases 
or decreases. It is of great interest to examine what happens to the general 
results as the parameters change and what this has to do with stability. Thus 
“state space” and “parameter space” are quite distinct concepts. State space 
is represented as a graph of the potential value(s) of the state variable(s) at 
a given set of parameter values, whereas parameter space is represented as a 
graph of the potential values of all the parameters in the model.

Consider the case of a nonreproductive population that receives migrants 
in a density-dependent fashion. That is, suppose that the rate of migration 
into the population is f, but f itself is a negative function of population density 
(the migrants have the ability to sense when the population is overcrowded, 
for example, and tend to avoid an overcrowded situation). This circumstance 
could be modeled with the simple equation

Nt+1 = λ(1 − Nt). (8)

As illustrated in figure 4.26, if the value of λ is greater than 1.0, the equilib-
rium point is oscillatory and a repeller (figure 4.26A). If the value of λ is less 
than 1.0, the equilibrium point is oscillatory and an attractor (figure 4.26C). 
The question then arises, What if the value of λ is exactly 1.0? Such a situa-
tion presents precisely the behavior one would expect mathematically: oscilla-
tory and neither an attractor nor a repeller (figure 4.26B).

Although it may not seem particularly important that the population perma-
nently oscillates between two particular values, the form of oscillation is par-
ticularly unusual. At every second time projection, the population will return 
to exactly what it had been before, no matter where it started. For example, if 
we begin with N = 0.3, the next value will be 0.7 (see equation 8) and the next 
value 0.3 again, whereas if we begin with 0.2, the next value will be 0.8 and 
the following one 0.2 again. That is, the population will oscillate with a cycle 
that is two time periods in length, but the exact values of the cycle will depend 

FigurE 4.26. Illustration of a structurally unstable parameter configuration for equa-
tion 8. (A) A point repeller resulting from a slightly larger value of λ than in B. (B) A 
neutrally stable situation in which the initiation point is forever repeated every other 
time unit. (C) A point attractor resulting from a slightly smaller value of λ.
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on the starting point. Although this situation is thought to be uninteresting in a 
biological sense, it is actually rather important mathematically and is ultimately 
a key point for conceptualizing the idea of structural stability. The behavior 
is illustrated in figure 4.26B, in which we see that the oscillations are neither 
stable nor unstable. This state is dependent on the assumption that λ = 1.0. If  
λ = 0.9999, say, the population will no longer continue returning to the point at 
which it started but rather will slowly converge on a value of about 0.67 (figure 
4.26C; actually the value is about 0.66665555). That is, the qualitative behav-
ior of the system changes dramatically when the value of λ is changed only 
slightly, from a system that is dependent on the starting point, ever cycling back 
to the same point, to a system that converges on a single equilibrium point—an 
attractor. Similarly, if λ = 1.00001, the system will slowly oscillate away from 
the point 0.67, an oscillatory repeller (figure 4.26A). So the value of λ = 1.0 is 
a kind of break point for the parameter λ. When λ is either greater than or less 
than 1.0 the system has qualitatively distinct behavior. Points such as λ = 1 in 
equation 8 are described as structurally unstable (or the model is structurally 
unstable at that point) because the slightest change in the parameter will yield a 
qualitatively distinct form of behavior for the system in general.

Points of structural instability, also called bifurcation points, often occur 
in ecological models, especially in discrete time, and they play a crucial part 
in analyzing the overall qualitative behavior of models. For another example, 
returning to the logistic equation (equation 5), three situations are illustrated 
in figure 4.27: λ < 2, λ = 2.0, and λ > 2.0. In the same sense as above, λ = 2.0 
appears to be a structurally unstable situation. The smallest reduction from 
the value of 2.0 yields a population that asymptotically approaches a point 
attractor, whereas the smallest increase from the value of 2.0 yields a popu-
lation that oscillates toward a point attractor. Thus the model is structurally 
unstable when λ = 2.0.

Another structurally unstable point is illustrated in figure 4.28. In this case 
the middle figure (figure 4.28B) is a graph of the logistic with λ = 3.0. If λ is 
decreased slightly, the figure in figure 4.28A emerges and the behavior of the 

Nt11

Nt Nt Nt

Nt11 Nt11

A
1 1 1

0 0 0
0 0 01 1 1

B C

FigurE 4.27. Graphs of equation 5 (the logistic map), illustrating the structurally unstable configu-
ration obtained when λ = 2.0. (A) λ < 2.0, leading to a stable node (nonoscillatory point attractor). 
(B) λ = 2.0, the bifurcation point. (C) λ > 2.0, leading to a stable focus (oscillatory point attractor).
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system is damped oscillations to a point attractor. If λ is increased from 3.0, 
the figure in figure 4.28C emerges and the behavior of the system is perma-
nent oscillations with a period of 2, which is to say that the population, no 
matter where it is initiated, eventually oscillates forever between two fixed 
values, indicated with dashed lines in the figure. Again, the model with λ = 3.0 
is structurally unstable in the sense that λ = 3.0 is a bifurcation point, with 
qualitative changes in the behavior of the system emerging when the param-
eter is changed ever so slightly from this value. The system switches from a 
single stable point attractor (oscillatory) to a stable period-two cycle. This 
type of bifurcation is known as a period-doubling bifurcation (in the context 
of continuous systems, i.e., with differential equations, the same qualitative 
arrangement is known as a Hopf bifurcation).

A very different type of bifurcation may arise in more complicated models. 
Consider, for example, the case modeled above of a constant population of 
predators in a system (equations 6a and 6b). With the appropriate choice of 
parameters, the situation in figure 4.29 may arise. Once again, the center graph 

FigurE 4.29. Illustration of a saddle-node bifurcation. (A) A single attractor at zero. (B) The bifur-
cation point. (C) After the bifurcation, there is a repeller (saddle) and an attractor (node), indicat-
ing that the bifurcation was of the saddle-node type.

FigurE 4.28. Graphs of equation 8 (the logistic map), illustrating the structurally unstable configu-
ration obtained when λ = 3.0. (A) 2.0 < λ < 3.0 (see figure 4.27C). (B) λ = 3.0. (C) λ > 3.0, leading 
to a two-point attractor.
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(figure 4.29B) is a bifurcation point in that one small change in a parameter 
may create the situation in figure 4.29A, whereas a change in the other direc-
tion might result in the situation illustrated in figure 4.29C. Note that two 
new equilibrium points have been created (or destroyed) in this bifurcation, 
one an attractor (sometimes referred to as a node) and one a repeller (some-
times referred to as a saddle). This type of bifurcation is variously referred to 
as a saddle-node bifurcation or as a blue-sky bifurcation (because two equi-
librium points appear “out of the blue”).

EXErcisEs

4.20 Using the logistic map,

Nt+1 = λNt(1 − Nt),

 solve for the equilibrium value of N and plot the equilibrium value as a function of λ.

4.21 Using the modified logistic map with constant predation,

Nt+1 = λNt(1 − Nt) − p,

 solve for the equilibrium value of N and plot the equilibrium values (that’s plural) as 
a function of λ. Generate two time series with the model using λ = 3, p = 0.3, start-
ing with N0 = 0.3 and N0 = 0.2. Generate two other time series with the model using 
λ = 4.4, p = 0.3, N0 = 0.11, and N0 = 0.10. Compare the time series to what you would 
have expected from the graph of the equilibrium values as a function of λ.

In recent years the saddle-node form of bifurcation has attracted a great 
deal of attention because of the fundamental idea of a regime shift (Schef-
fer 2009; Scheffer et al. 2009, 2012). As is evident in figure 4.29, alternate 
states exist for the system, and those alternate states may, in the real world, be 
alternate forms of an ecosystem, sometimes with important practical conse-
quences. For example, recently it has been suggested that some of the world’s 
most common terrestrial formations are actually alternate modes of eco - 
system organization, such that whether a system is a desert or a savannah may 
be a consequence of the point of initiation (figure 4.30). One of the implica-
tions is the possibility of “tipping points” that will rapidly shunt the system 
into one or another of the states, a so-called regime shift. Furthermore, there 
are reasons to expect a hysteresis, a range of some parameter value for which 
the system effectively gets stuck in one regime. So, for example, if climate 
change continues to produce drier conditions at the south end of the Sahara 
Desert, much of the savannah will convert to desert, yet if the climate were 
then to reverse and became more moist, the desert would persist.

The above two types of bifurcation (period-doubling and saddle-node) are 
both characteristic of changes in point attractors or repellers. In the case of 
the period-doubling bifurcation, the bifurcation itself shifts the model from a 
point attractor to an oscillatory attractor, but before the bifurcation, the equi-
librium is a point attractor. Other types of bifurcation may involve strange 
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attractors and tend to be far more complicated. Consider, for example, the 
constant predator model (equations 6a and 6b). In figure 4.31 this model is 
plotted first (figure 4.31A) with parameters such that there are two attractors, 
to the left a point attractor at zero and to the right a strange attractor, and 
the two are separated by a separatrix. A small change in parameter results in 
the condition illustrated in figure 4.31B. A further small change in parame-
ter causes the strange attractor to collide with the basin of the point attractor, 
eliminating the strange attractor entirely (figure 31C). What used to be parts 
of the trajectory of the strange attractor are now simply trajectories within 
the basin of attraction of the point attractor at zero. This sort of bifurcation 
phenomenon is known as a basin boundary collision because the basin of one 
attractor (the lower point attractor at zero) collides with the dynamic bound-
ary of the strange attractor.

These examples, two structural instabilities associated with point attrac-
tors (period-doubling and saddle-node bifurcations) and a structural insta-
bility associated with a strange attractor (basin boundary collision), are but 
a few of the possibilities. Other structural instabilities are possible with more 
complicated models but are beyond the scope of this text.

Structural stability, then, is a very different form of stability. It involves the 
structure of the model as a whole and its qualitative behavior.
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FigurE 4.30. Example of a possible application of a saddle-node bifurcation (also 
more popularly known as a tipping point). Note that the vegetation cover is repre-
sented as a bold line, either a stable set of points (a node) with a solid bold line or 
an unstable set of points (a saddle) with a dashed bold line. As rainfall becomes less 
abundant, the vegetation cover slowly declines. However, there appears to be a tip-
ping point, which is to say a point at which the vegetation cannot be sustained at 
all, and a desert results. This sort of arrangement also implies a zone of hysteresis; 
as the rainfall decreases, the system suddenly becomes a desert, but once it is in a 
desert, even though rainfall might increase again, the desert persists over the whole 
range of hysteresis.
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bifurcation diagrams

Nonlinear models are frequently quite resistant to traditional analytical treat-
ment. The one-dimensional maps (discrete time) and simple differential equa-
tions (continuous time) that have served to illustrate basic model behavior in 
this chapter are really only heuristic devices, enabling a partial understanding 
of the kinds of underlying structures that may give rise to complicated behav-
iors in more realistic models. For example, in more complicated predator–prey 
models, it is sometimes possible to construct an approximate one-dimensional 
map that captures the qualitative behavior of the more complicated model 
(e.g., Schaffer 1985). The basic structure of the one-dimensional model is then 
much easier to comprehend than the complicated model (a model of a model, 
so to speak).

One way of examining the general behavior of a complicated model when 
traditional analytical procedures are unavailable (i.e., because of the com-
plexity of the model it is not possible to treat them analytically) is the bifurca-
tion diagram. The various forms of bifurcation already described previously 
in this chapter (i.e., points of structural instability) are sometimes easily visu-
alized in a “bifurcation diagram.” Consider the standard logistic map,

Nt11
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FigurE 4.31. Illustration of a basin boundary collision. (A) Alternative attractors, one at zero and 
the other a strange attractor. (B) Bifurcation point. (C) After the basin boundary collides with the 
strange attractor, the trajectories that had been part of the attractor are now just part of the basin 
of attraction for the point attractor at zero. Panels D, E, and F are microscopic views of the area 
near zero, illustrating the positions of the trajectory emanating from the peak of the function.
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Nt+1 = λNt(1 − Nt).

As shown earlier, this model will have a bifurcation point at λ = 3, with a 
simple equilibrium point when λ < 3 and a periodic solution when λ > 3. Spe-
cifically, the periodic solution is a “period-two” attractor, which is to say that 
the system oscillates between two points, exactly the same two points, forever. 
Consider, for example, the value of λ = 3.2. If we begin with

Nt = 0.8,

we can easily calculate

N2 = 3.2N1(1 − N1) = 3.2(0.8)(1 − 0.8) = 3.2(0.8)(0.2) = 0.512.

Then we can substitute 0.512 to compute N3, as follows:

N3 = 3.2(0.512)(1 − 0.512) = 3.2(0.512)(0.488) = 0.8,

which is the same number we originally started with. Thus we see that in this 
case the model will oscillate between 0.512 and 0.8 in perpetuity. This is a 
period-two (two values that are repeatedly visited) attractor.

In addition to the bifurcation point at λ = 3, without further proof, if λ 
becomes still larger, the period-two attractor converts into a period-four 
attractor, and if it becomes even larger, the period-four attractor converts into 
a period-eight attractor. (The interested reader can verify any of this with 
some simple experiments on a spreadsheet, following the approach of exer-
cise 4.21.) In figure 4.32 this process is illustrated by way of a graph of N* 

N*

3 λ

Values of λ 
for which 
there is a
two-point
attractor 

Values of λ 
for which 
there is a
four-point
attractor 

Value of λ 
for which 
there is an
eight-point
attractor 

FigurE 4.32. Illustration of the basic bifurcation process. Values of λ that result in 
various attractor types are illustrated. Dashed lines connect these points in what is 
likely to be the intermediate values giving rise to the different attractors. Note the 
bifurcating nature of the picture, giving rise to the appellation bifurcation diagram.
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against λ, where N* is either the single equilibrium point for a point attractor 
or one of the repeated points of the periodic attractor.

In figure 4.32 the points referred to above are plotted, but they are also 
connected with dashed lines. It is intuitively obvious that the dashed lines rep-
resent an approximation of what the intermediate values of N* would be, and 
it is clear that the dashed lines bifurcate at critical points. The diagram in fig-
ure 4.32 is thus referred to as a bifurcation diagram, and is an important tool 
used to study complex models.

Rather than choosing particular values of λ and calculating the values of 
N*, we can simply calculate N* for all of the values of λ, incrementing by 
some small amount. If we do this for the logistic map, we obtain the graph 
presented in figure 4.33.

The various attractors described in figure 4.32 are clearly visible in figure 
4.33. Also visible is the bifurcation event at λ = 4, fully explained in an earlier 
section. By examining such a bifurcation diagram it is frequently possible to 
gain an overall picture of how the model behaves. In this case there is a clear 
cascade of period-doubling events, from one to two to four to eight. In figure 
4.34 a part of the bifurcation diagram is expanded (λ = 3.5 − 3.7).

Note that the period-doubling cascade is now visible for periods 4, 8, and 
16. What happens is what one would expect, for the most part. The peri-
ods keep doubling, and the change necessary in λ to get to the next doubling 
keeps decreasing. Eventually there has been such a massive period doubling 
that a remarkable point is reached at which one can simultaneously get all 
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FigurE 4.33. Bifurcation diagram for the logistic map. Note the similarity to fig-
ure 4.32. There is a clear period-doubling bifurcation at λ = 3. At λ = 3.5 another 
period doubling has already occurred and the system is in a four-point attractor. At 
λ slightly larger than 3.5 another doubling occurs and the period eight attractor is 
visible. Note also the period-three “window.” At λ = 4 there is another bifurcation, 
as described earlier in the text.
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possible periods as well as an uncountable number of aperiodic (i.e., never 
settling down to permanent values) attractors. This is the point at which the 
system is usually referred to as chaotic, and the manner in which chaos is 
approached here is referred to as the period-doubling route to chaos (there 
are other, qualitatively distinct, forms, but those are beyond the scope of this 
text). Just how complicated this behavior is can be appreciated by noting 
that there is a “window” in the original diagram (figure 4.33) in which there 
is an attractor of period 3. Where does a period-three attractor come from if 
the sequence goes 1, 2, 4, 8, 16, . . . ? Similarly, in figure 4.34 there is a win-
dow with a clear period-6 attractor. Where does that come from? Suffice it 
to say here that the explanation is mathematically complicated and beyond 
the intentions of this text. But biologically all it means is that the system is 
extremely unpredictable in the range of about 3.58 < λ < 4, which is why the 
term chaos seems to be so popular.

As an example of the utility of bifurcation diagrams, consider the Tri-
bolium model presented in chapter 2. Recall that the population was divided 
into larvae, pupae, and adults and the nonlinear projection matrix model was 
given as

Lt+1

Pt+1

At+1

 = 

0 0 f1(Lt At)

plp 0 0

0 f2(At) paa
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FigurE 4.34. Close-up of part of the bifurcation diagram of figure 4.33.
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where L is the number of larvae, P is the number of pupae, and A is the num-
ber of adults. The functions f1 and f2 stipulate the nonlinear effect of canni-
balism on the production of larvae by adults and the survival of pupae to 
adulthood, respectively. These functions are given as

f1 = b
ec1Lt+c2At

and

f2 = b
ec3At

,

which are intended to incorporate the biological fact of cannibalism. This 
model would in fact be quite daunting if one were to try to solve it analyti-
cally, and it certainly does not lend itself to any obvious intuitive or heuristic 
explanation. But if one generates a bifurcation diagram, as Costantino et al. 
(1997), did, the diagram as pictured in figure 4.35 is obtained.

This bifurcation diagram was obtained by performing a series of exper-
iments to estimate the parameters of the model and then substituting those 
values into the model, fixing all parameters except c3. The parameter c3 rep-
resents the rate of consumption of larvae per adult and is a parameter that 
Costantino and colleagues could experimentally manipulate in the labora-
tory. They next chose particular values of c3 that represented various different 
dynamic situations, as indicated by the arrows on the top of the bifurcation 
diagram, and set up laboratory cultures corresponding to those particular val-
ues of c3. Their results are shown in figure 4.36.

The open circles are the experimental results, and the closed circles are the 
expected results based on the model. The six different graphs correspond to 
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FigurE 4.35. Bifurcation diagram of the Tribolium model. The bifurcation param-
eter is c3, consumption of pupae by adults, and the variable plotted is the total 
population size. Reprinted with permission from Costantino et al. (1997). © 1997 
American Association for the Advancement of Science.
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the positions of the arrows in figure 4.35. There is a remarkable correspon-
dence between what was expected and what is observed. What is even more 
remarkable is that the biologists on this team of investigators first thought 
that several of the theoretical outcomes would be impossible to achieve in the 
laboratory. But the data speak for themselves. Here the bifurcation diagram 

FigurE 4.36. Experimental results of the Tribolium experiment of Costantino et 
al. (1997). The upper left-hand graph is the control; all others correspond to the 
values of c3 indicated by the arrows in the upper part of figure 4.35. Open circles 
are the observed values; closed circles, lines, or loops are the expectation from the 
model. Reprinted with permission from Costantino et al. (1997). © 1997 American 
Association for the Advancement of Science.
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was critical to the evaluation of the model to the point that predictions from 
the model came directly from the bifurcation diagram. The more traditional 
technique of comparing changes in the variables over time to the predictions 
over time generated by the model and by experiments could never have pro-
vided such a strong and elegant test of the model as did the analysis of the 
bifurcation diagram.

concluding remarks

In this chapter we have dealt with a panoply of different subjects related to 
the analysis of population models. These sorts of methods are currently the 
subject of intense investigation, and certainly this chapter will seem outdated 
within a few years. Nevertheless, these concepts are playing an increasingly 
important role in population modeling these days, and a minimal introduc-
tion, such as we have provided in this chapter, is essential background for 
understanding and using contemporary ecological approaches to population 
dynamics.

The primary focus in this chapter has been on the tools with which we can 
analyze models with complex behaviors, but the insights gained also lead to 
some important practical conclusions. We opened this chapter with notions of 
equilibrium and stability, long the bastions of creative thought in the search 
for a theory of ecosystems. The analyses in this chapter suggest that these 
notions may need to be abandoned, at least in terms of their classical mean-
ing. For example, a dynamic system in chaotic behavior, such as that illus-
trated in figure 4.23B or figure 4.31A, is by classical standards unstable and 
in a strict mathematical sense unpredictable. Nevertheless, it has clear bound-
aries to its behavior and in another sense is quite stable—within the dynamic 
boundaries of its own region. Which sense is important to an ecosystem man-
ager? Which sense is important in terms of understanding the ecosystem? 
Which sense is important in the context of natural selection?

These concepts may also suggest resolutions of various paradoxes of ecol-
ogy. For example, the conundrum presented in the first paragraphs of this 
chapter, in which diversity is thought to generate stability yet some highly 
diverse systems are thought to be quite fragile, can be easily resolved. Perhaps 
the stability originally thought to result from the diversity actually refers to 
regional stability with a broad basin of attraction. The fragility that was actu-
ally observed when analyzing the question might then refer to the possibility 
that the basin itself could become smaller as diversity is reduced, increasing 
the likelihood that the basin could be traversed and the integrity of the sys-
tem thus breached. Whether this is actually true of highly diverse systems is 
not the point here. Rather, these concepts suggest the way that some, perhaps 
many, natural historians have thought about this issue when they have pon-
dered the relationship between diversity and stability.

In the sort of truly complex ecosystems likely to be encountered in the real 
world, the examples in this chapter will seem overly simplistic. Yet the New-
tonian notion of point stability remains a stalwart of many thinkers in the 
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field of ecosystem dynamics, if only tacitly so. The simple one- and two-di-
mensional examples of this chapter are intended to introduce the notion of 
regional stability and the various complexities associated with it. Any real-
world system will be multidimensional and ultimately must be represented in 
hyperspace. Figure 4.37 presents a “collapsed” hyperspace, a fictional two-di-
mensional representation of a multidimensional space. In figure 4.37A is a 
system with four unstable points, yet there are two attractors that contain 
two of the four unstable points. The attractors are regionally stable. Accord-
ing to classic definitions of stability, this would be a very unstable system 
indeed. Traditional analysis of neighborhood stability would determine that 
there are four equilibrium points, all of which are unstable. Yet almost any-
one would agree that this system is more “stable” in some vague ecological 
sense than the alternative system illustrated in figure 4.37B. This system has 
two stable points (one at zero), yet intuitively most would regard it as less sta-
ble than the one in figure 4.37A. Clearly, the notion of regional stability more 
clearly encompasses what most workers in ecology would describe as stable, 
and a regional attractor is similarly closer to intuitive notions of equilibrium 
than are the single points of the neighborhood stability sense.

The notion of structural stability represents a totally different idea of sta-
bility than does either the neighborhood or the regional sense and in a vari-
ety of ways is probably similar to what many in the environmental movement 
really mean when they refer to a stable system—a system that shows partic-
ular characteristics and will continue to show those characteristics even if 
small changes in conditions occur in the environment. So, for example, when 
the local environment changes such that a crop pest develops a locally ele-
vated population density, the natural enemies of the traditional agroecosystem 
may respond by exerting control over that temporarily elevated population. 
A change had occurred in a parameter (the local environment that resulted in 
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FigurE 4.37. Theoretical situations in which (A) five-point repellers and two 
regional (strange) attractors coexist and (B) two-point attractors and a regional 
repeller coexist. The point attractors are illustrated by closed circles and the point 
repellers by open circles.
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the elevated population density of the pest), but the system was structurally 
stable. No large change in its behavior resulted from this change in parameter.

Yet points of structural instability, especially bifurcation points, are some-
times exactly what we are looking for when we aim to understand or design 
ecosystems. Could it be, for example, that the conventional techniques for 
producing and processing tomatoes in California simply represent a syndrome 
of production, that another syndrome (the organic method, for example) 
might emerge if the parameters were changed somewhat, and that strategists 
aiming to convert to organic production might very well look for that break 
point, the bifurcation point that will carry the entire system into the organic 
mode? On the other hand, gradual changes in parameters may lead to a basin 
boundary collision in which a system originally held within a bounded attrac-
tor that represents a desired state of the ecosystem is engulfed in the basin of 
an attractor that includes undesired states. This phenomenon has been sug-
gested as a possible mechanism for sudden extinction in natural populations 
(McCann and Yodzis 1994). This somewhat philosophical point will be left 
for the reader to ponder. Suffice it to say that the notion of structural stability 
is crucial in many ways to understand and/or design ecosystems.

Throughout this chapter we have minimized use of the word chaos, even 
though much of what is included is closely related to the field commonly 
known as chaos theory. We have done this because the word chaos has been 
something of a misnomer, leading to some confusion about the implications 
of chaotic behavior. The chief source of confusion comes from what has per-
haps been an overemphasis on one particular aspect of chaos, sensitive depen-
dence on initial conditions, especially in the popular literature on the subject. 
This particular characteristic is actually not even uniquely characteristic of 
strange attractors; unstable points exhibit the same phenomenon. However, 
the persistence of systems even though chaotic, coupled with the property of 
sensitive dependence on initial conditions, leads to the intuitive notion that 
they are inherently unpredictable. Although this is true in a narrow technical 
sense, it is certainly not the most important aspect of strange attractors (a bet-
ter name than chaotic attractors).

Consider, for example, a tornado (Vandermeer and Yodzis 1999). That is 
most likely a chaotic object, an example of a strange attractor. It represents 
sensitive dependence on initial conditions in the following sense. Consider 
two particles of dust within the tornado. If they are very close to one another 
at one point in time, that fact has no bearing on where they will be with 
respect to one another in the near future. And how close they are now is not 
at all correlated with how close they will be in the future. So the future loca-
tion of each dust particle is dependent on exactly where it is now and may 
change very dramatically with only a very slight change in its position now. 
That is sensitive dependence on initial conditions. But in fact that is not the 
interesting thing about a tornado. It is shaped like a funnel—that is, it has a 
morphology—and the whole thing travels along the ground wreaking dev-
astation wherever it goes—that is, it has a behavior. Furthermore, if you see 
one coming toward you it is really quite a good idea to get out of the way, 
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even though it is chaotic and therefore “unpredictable.” Sensitive dependence 
on initial conditions, the key idea of the unpredictability of chaos, refers only 
to the behavior of those dust particles inside the tornado. What is truly inter-
esting about a tornado, what we wish to know and even predict, is perfectly 
knowable and predictable—thankfully. As was so eloquently stated in a recent 
summary of complexity theory:

First, control of natural phenomena begins to slip out of the grasp of 
observers, both because sensitivity to initial conditions severely limits 
the possibilities for prediction and control and because emergent prop-
erties of complex systems are unpredictable from a knowledge of parts. 
. . . Second, these emergent properties can nevertheless be made intelli-
gible in terms of appropriate descriptions of the processes involved, by 
using high-level concepts that capture their essential aspects. (Solé and 
Goodwin 2000, 27)

It is probably not of particular interest to determine whether a system is 
“formally” chaotic or not. An extremely complicated periodic attractor is, for 
all practical purposes, equivalent to a strange attractor anyway. If the behav-
ior of the system is bounded and there is an instability within the bounded 
region, for all practical purposes it may be treated as if it were a strange 
attractor. Granted that there are cases of rather simple periodic attractors 
that can be analyzed in a traditional fashion. But many of the system behav-
iors that we can expect of populations embedded in ecosystems are likely to 
be very complicated, more like those of strange attractors than those of sim-
ple points or limit cycles. This does not mean that they cannot be understood 
any more than it means that a tornado has no shape. The focus should be 
not on the unpredictability but rather on the morphology of the attractor—
where are its boundaries, is it periodic-like, does it have dense and less dense 
regions, what is its overall shape, and so forth—the “appropriate descrip-
tions” referred to in the above quotation. Much as we find in studying the 
morphology of organisms, there is no one defining feature of the morphology 
of strange attractors.

In studying the morphology of attractors, we have presented what seem to 
be some key principles. Where are the boundaries of a regional attractor? Is it 
structurally stable (in a practical sense)? What are the natures of nearby bifur-
cation points? Where are the basins of attraction? These and similar questions 
are likely to be the ones we are able to answer about ecosystems in general 
and, we furthermore suggest, are the ones we are more interested in answer-
ing anyway, in the pursuit of understanding and/or designing ecosystems.




